A Practical Implementation of a Modular Algorithm for Ore Polynomial Matrices

نویسندگان

  • Howard Cheng
  • George Labahn
چکیده

We briefly review a modular algorithm to perform row reduction of a matrix of Ore polynomials with coefficients in Z[t], and describe a practical implementation in Maple that improves over previous modular and fraction-free versions. The algorithm can be used for finding the rank, left nullspace, and the Popov form of such matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Popov Form of General Ore Polynomial Matrices

We show that the computation of the Popov form of Ore polynomial matrices can be formulated as a problem of computing the left nullspace of such matrices. While this technique is already known for polynomial matrices, the extension to Ore polynomial matrices is not immediate because multiplication of the matrix entries is not commutative. A number of results for polynomial matrices are extended...

متن کامل

Computing Popov Form of Ore Polynomial Matrices

We show that the computation of the Popov form of Ore polynomial matrices can be formulated as a problem of computing the left nullspace of such matrices. While this technique is already known for polynomial matrices, the extension to Ore polynomial matrices is not immediate because multiplication of the matrix entries is not commutative. A number of results for polynomial matrices are extended...

متن کامل

Modular Computation for Matrices of Ore Polynomials

We give a modular algorithm to perform row reduction of a matrix of Ore polynomials with coefficients in Z[t]. Both the transformation matrix and the transformed matrix are computed. The algorithm can be used for finding the rank and left nullspace of such matrices. In the special case of shift polynomials, we obtain algorithms for computing a weak Popov form and for computing a greatest common...

متن کامل

Fraction-free algorithm for the computation of diagonal forms matrices over Ore domains using Gr{ö}bner bases

This paper is a sequel to “Computing diagonal form and Jacobson normal form of a matrix using Gröbner bases” (Levandovskyy and Schindelar, 2011). We present a new fraction-free algorithm for the computation of a diagonal form of a matrix over a certain non-commutative Euclidean domain over a computable field with the help of Gröbner bases. This algorithm is formulated in a general constructive ...

متن کامل

Modular approach for an ASIC integration of electrical drive controls

VLSI circuits design allows today to consider new modes of implementation for electrical controls. However, design techniques require an adaptation effort that few designers, too accustomed to the software approach, provide. The authors of this article propose to develop a methodology to guide the electrical designers towards optimal performances of control algorithms implementation. Thus, they...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009